Penalized Empirical Likelihood and Growing Dimensional General Estimating Equations

نویسندگان

  • CHENLEI LENG
  • CHENG YONG TANG
چکیده

When a parametric likelihood function is not specified for a model, estimating equations provide an instrument for statistical inference. Qin & Lawless (1994) illustrated that empirical likelihood makes optimal use of these equations in inferences for fixed (low) dimensional unknown parameters. In this paper, we study empirical likelihood for general estimating equations with growing (high) dimensionality and propose a penalized empirical likelihood approach for parameter estimation and variable selection. We quantify the asymptotic properties of empirical likelihood and its penalized version, and show that penalized empirical likelihood has the oracle property. The performance of the proposed method is illustrated via several simulated applications and a data analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized generalized estimating equations for high-dimensional longitudinal data analysis.

We consider the penalized generalized estimating equations (GEEs) for analyzing longitudinal data with high-dimensional covariates, which often arise in microarray experiments and large-scale health studies. Existing high-dimensional regression procedures often assume independent data and rely on the likelihood function. Construction of a feasible joint likelihood function for high-dimensional ...

متن کامل

Maximum empirical likelihood estimation in U-statistics based general estimating equations

Li, Lingnan Ph.D., Purdue University, August 2016. Maximum Empirical Likelihood Estimation in U-statistics Based General Estimating Equations. Major Professor: Hanxiang Peng. In the first part of this thesis, we study maximum empirical likelihood estimates (MELE’s) in U-statistics based general estimating equations (UGEE’s). Our technical maneuver is the jackknife empirical likelihood (JEL) app...

متن کامل

Empirical Likelihood for Estimating Equations with Missing Values

We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide-ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...

متن کامل

Censored Empirical Likelihood with Over-determined Hazard-type Constraints

Qin and Lawless (1994) studied the empirical likelihood method with general estimating equations. They obtained very nice asymptotic properties especially when the number of estimation equations exceeds the number of parameters (over determined case). We study here a parallel setup to Qin and Lawless but uses a hazard-type estimating equations. The empirical likelihood we use here is also formu...

متن کامل

Nonparametric Imputation of Missing Values for Estimating Equation Based Inference

We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011